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Abstract

A complete description of the T1-NMRD profiles and the ESR lineshape of Gd(III) complexes (S = 7/2) was presented using
second-order perturbation theory (GSBM) by Zhou et al. [J. Magn. Reson. 167 (2004) 147]. This report compares the GSBM with
the stochastic Liouville approach (SLA) to determine the validity of the closed analytical expressions of NMRD and the ESR line-
shape functions. Both approaches give the same results at high fields while a very small divergence is observed for X- and W-band
ESR lineshapes when the magnitude of the perturbation term times the correlation time approaches the limit of the perturbation
regime, DZFSsf � 0.1. There was a clear discrepancy between the theoretical GSBM X-band spectrum and the recorded ESR spec-
trum of the Gd(III) MS-325 + HSA complex. This is probably due to a slow-motion effect caused by a slow modulation of the ZFS
interaction. The characteristic correlation time of this slow modulation is in the range of 150 ps, which therefore cannot be due to
the reorientational motion of the whole MS-325 + HSA complex.
� 2004 Published by Elsevier Inc.
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1. Introduction

Paramagnetic relaxation enhancement (PRE) is a
phenomenon that usually explains the enhancement of
water proton spin–lattice relaxation in the presence of
paramagnetic ions. The PRE influences are very impor-
tant in MRI studies because they are responsible for
contrasting effects in the generated images [1]. The origi-
nal Solomon–Bloembergen–Morgan (SBM) theory [2–4]
has been widely used to describe this phenomenon. The
SBM theory is condensed into simple mathematical
expressions, which makes it easy to apply in the analyses
of experimental data. SBM is a second-order perturba-
tion theory, which is only valid in the high-field regime,
where the Zeeman Hamiltonian is much larger than the
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perturbation Hamiltonian [5]. Furthermore, for high-
spin metal ions (S > 1), the SBM theory is only valid
for the electron spin system in the extreme narrowing re-
gime. Consequently, it does not account for multiple
exponential electron spin relaxation and dynamic fre-
quency shifts [6,7].

Recently, we have developed a generalized SBM the-
ory (GSBM) which fully includes multi-exponential elec-
tron spin relaxation as well as the dynamic frequency
shift [8–10]. GSBM may be expressed in a closed analyt-
ical form, but the expressions are somewhat more com-
plicated than the SBM expressions. In addition, the
complete ESR lineshape function I (x) is derived within
the same spin Hamiltonian model as in GSBM. GSBM
thus simplifies a combined ESR and NMRD-PRE anal-
ysis of Gd(III) complexes [10]. The GSBM has been
implemented into a simple Fortran program, which
should be a useful tool for experimental analysis of both
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T1-NMRD profiles and ESR experiments (all available
ESR bands). A combined NMRD and ESR analysis
has also been recommended by other research groups,
using an approach which includes a direct simulation
method of the electron spin relaxation [11–14]. This ap-
proach may treat the non-perturbation regime as well
but thus demands more computational power. Fries,
Rast, and co-workers [11–14] have analysed the ESR
spectra of several Gd(III) complexes and found that
both a static and a transient zero-field splitting (ZFS)
are needed. The accuracy of a second-order perturba-
tion theory is questionable for slow tumbling complexes
with a static zero-field splitting interaction. The influ-
ence on ESR spectra of fourth- and sixth-order terms
of the ZFS interaction has been studied as well [13]. In
principle, it is straightforward to include these higher-
order terms of the ZFS interaction in our approach.
One must determine the corresponding Redfield relaxa-
tion elements and include them in the Relaxation matrix
(cf. Appendix A, Eq. (A.1)). However, an extension of
the ZFS Hamiltonian to higher rank terms introduces
extra parameters, which should be determined. This is
a difficult matter. The estimation of fourth and sixth
rank parameters, made by Rast et al. [13], and based
on multi-frequency ESR linewidth analysis, is not con-
clusive. Their fourth-order parameter is of the same size
as their sixth rank parameter. However, one may expect
that the sixth rank parameter should be smaller than the
fourth rank parameter. An alternative view is to regard
the inclusion of high rank ZFS terms, as a way of mim-
icking a complex dynamics model of the ZFS correlation
function. The reorientational correlation times of higher
rank tensors introduce spectral density functions with
several dispersions, determined by the correlation times
s2 = 140/6, s4 = 140/20, and s6 = 140/42 ps, where
sL = sR/L(L+1). The ZFS correlation function is essen-
tially unknown and a single exponential decay is clearly
a simplification. The intermediate, or low-field limit re-
gime, may also influence X-band ESR spectra, but this
effect has not previously been studied. It is therefore
motivated to investigate the regime of validity of the rel-
atively simple GSBM theory as well as to produce the
characteristic NMRD profiles and X or any higher fre-
quency band ESR lineshapes for regimes where the
GSBM may be questionable.

In this work, we compare the NMRD and ESR results
obtained using the stochastic Liouville approach (SLA)
with the corresponding GSBM results. This is carried
out using the simple pseudo-rotation model [15] using
only a ZFS parameter and a distortion correlation time
sf. For a comparison between SLA and GSBM, this is
sufficient because the crucial factor, determining the
applicability of the perturbation theory (GSBM), is the
interaction factor defined as DZFS (the ZFS interaction
strength) · sf. The SLA gives a complete relaxation
description of the electron spin systems, whereas the
nuclear spin system is described in the perturbation re-
gime. The low-field regime, where the ZFS interaction is
larger than the Zeeman interaction, is also fully de-
scribed. For the interested reader we recommend compre-
hensive review articles in this field [16,17]. The SLA has
most often been applied to S = 1 where more details are
given about how to set up the Liouville matrix [17–19].

In this work, we present evidence that the X-band
spectrum of Gd(III) complex MS-325 in the presence
of human serum albumin (HSA) displays the non-
Lorentzian character because there is a slowly modu-
lated ZFS interaction. However, this modulation is too
fast to be due to the reorientational tumbling of the
whole complex.

This paper is organized as follows: First, we give a
brief review of the NMR-PRE theory, focusing on the
GSBM and SLA approaches. Then, we present and dis-
cuss a couple of cases where GSBM and SLA may be ex-
pected to generate different results. The analysis of the
MS-325 complex associated with HSA is interesting be-
cause the X-band spectra could not be described within
the GSBM theory, whereas the NMRD profile was well
described [10]. In Appendices A and B, we give the full
expressions of the GSBM theory and in Appendix C
the complex ESR lineshape function is presented. These
expressions have not previously been published. A com-
puter program is written in Fortran and may be obtained
upon request from Xiangzhi.Zhou@chem.umu.se.
2. Theory

The inner sphere water proton relaxivity, R1 = 1/
T1p[M], is expressed as the relaxation enhancement di-
vided by the concentration of paramagnetic ions, mea-
sured in units of ðmmol

dm3 sÞ�1. The relaxivity R1 produces
the NMRD profile when measured as a function of
the nuclear Larmor frequency xI.

1

T 1p½M � ¼
2q � 10�3

55:56

� �
1

T 1M þ sM
: ð1Þ

Here, q denotes the number of fast exchanging water
molecules in the first hydration shell of a paramagnetic
metal ion with electron spin quantum number S. The
concentration of paramagnetic ions is denoted [M] and
for water it is 55.56 mol

dm3. The mean life time for the inner
water sphere is denoted sM. T1M is the spin–lattice relax-
ation time of inner sphere water molecules. In this work,
all model calculations are made under fast exchange
conditions sM � T1M. Considering only the relaxation
contribution due to nuclear spin–electron spin dipole–
dipole interaction, the paramagnetic enhanced proton
spin–lattice relaxation time T1M is given by

1

T 1M
¼ 4

3

l0

4p

� �2

�h2c2I c
2
S

SðS þ 1Þ
r6

sDD
c : ð2Þ
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Here, l0, �h, cI, and cS have their usual physical meanings
and the effective electron spin–nuclear spin dipole–di-
pole correlation time sDD

c is defined as,

sDD
c ¼ Reð0:1� sDD

1 þ 0:3� sDD
0 þ 0:6� sDD

�1 Þ; ð3Þ
which is a weighted sum of spectral density functions
sDD
r , where r can take the values �1, 0, and +1. The
spectral density sDD

r is the Fourier–Laplace transform
of the reorientation correlation function and the elec-
tron spin correlation function, trS fS1y

r e
iLSsS1

rq
T
S g, at the

nuclear Larmor frequency xI.

sDD
r ðxI þ rxSÞ ¼

3

SðS þ 1Þ

�
Z 1

0

trS S1y
r e

iLSsS1
rq

T
S

� �
e�ðixIþ1=sRÞs ds

� M�1
rr : ð4Þ

Two assumptions are used in the derivation of Eq.
(4). First, the complete electron spin dipole–nuclear spin
dipole correlation function [16,17] has been decomposed
into a pure reorientational and an electron spin correla-
tion function. This is strictly valid, provided the electron
spin relaxation is independent of the reorientation mod-
ulated electron spin relaxation mechanism [17]. Second,
the reorientational correlation function is taken to be
isotropic and characterized by one reorientational
correlation time sR. Thus, the important quantity is
the electron spin correlation function, which is given
by hS1y

r ðtÞS1
rð0Þi � trS fS1y

r e
iLSsS1

rqSg. The connection
between NMRD-PRE and ESR lineshape experiments
is thus evident. The latter focuses on the complex line-
shape function I (x � xS),

Iðx� xSÞ ¼
Z 1

0

e�ixt trS S1y
1 e

iL̂SsS1
1q

T
S

n o
dt

� a~q1
1ðx� xSÞ; ð5Þ

whose real and imaginary parts represent the absorp-
tion spectrum and the dispersion spectrum, respec-
tively. Here, xS denotes the electron Larmor
frequency and LS is the Liouville operator which gov-
erns the time dependence of the electron spin correla-
tion function (cf. Eq. (6)). The ESR lineshape is
obtained as the derivative of the absorption spectra
(i.e., Re I (x � xS)).

Sometimes the electron spin–spin correlation func-
tion of Eq. (5) is expressed in the Heisenberg picture
with explicit time-dependent spin operators or in the
Schrödinger picture, in terms of the spin density matrix
element. Of course these descriptions are equivalent
hS1y

1 ðtÞS1
1ð0Þi � hS1y

1 S
1
1iq1

1ðtÞ. The first rank electron spin
density matrix element q1

1ðtÞ represents the time-depen-
dent transverse magnetization. Recently, this relation
between NMRD and ESR was questioned by Sharp
and Lohr [20].
2.1. The LS in GSBM

In Eq. (4), the Liouville superoperator LS governing
the electron spin correlation function reads

LS ¼ LZeeman
S þ iRZFS; ð6Þ

where LS is composed of a Zeeman term and the Redfield
superoperator. The latter is generated by the time-
dependent ZFS interaction. The Zeeman Hamiltonian is

HZeeman
S ¼ ��hcSB0S

1
0; ð7Þ

where cS ¼ ge
2
1:76084� 1011 rads�1T�1. The spectral

density sDD
r in Eq. (4) may be extracted as a matrix ele-

ment, M�1
rr of the inverted full matrix M, generated by

the Liouville and Redfield superoperators (cf. Eq. (6)).
The explicit expressions for the inverted matrix element,
sDD
1 , are given by Eq. (A.6) in Appendix A and sDD

0 in
Eq. (B.4) of Appendix B.

2.2. The LS in the SLA

In the stochastic Liouville approach (SLA), the full
Liouville operator Eq. (6) is replaced by

LS ¼ LZeeman
S þ LZFS

S ðXÞ þ iCPRðXÞ: ð8Þ
Here, LZeeman

S , LZFS
S ðXÞ, and CPR (X) stand for the elec-

tron spin Zeeman Liouvillean, the stochastic time-de-
pendent ZFS interaction, and the Markov operator,
respectively. The latter describes the dynamics of the rel-
evant stochastic variables X of the ZFS interaction
[16,17].

In the Liouville space, one may construct a superma-
trix of infinite dimension: ML ¼ �iLS þ ðixI þ 1

sR
ÞE

where E is the unit matrix. We have indicated, with an in-
dex (L), that this matrix should not be mixed up with the
Mmatrices of the GSBM theory given in the appendices.
In Liouville space, the matrix elements of LS are
Lij � ðOy

i jLS jOjÞ ¼ trL fOy
i ½HS ;Oj�g, expressed in terms

of the commutator and a complete set of operators |Oj)
spanning the Liouville space. The basis operator |Oj)
refers to the direct product of spin operators and eigen-
functions to the diffusion operator CPR, describing the
classical degrees of freedom. In the appendices of the re-
view article [17] and in the papers [18,19], the construction
of this Liouville matrix is given in more detail. Again the
spectral density, sDD

n is obtained from a matrix inversion,

sDD
n ðxIÞ ¼ c�nM

�1
L cn; ð9Þ

where vector cn projects out the relevant matrix elements
of the full inverted supermatrix matrix M�1

L .
3. Results and discussion

In this section, we present a number of NMRD pro-
file and ESR lineshape calculations to determine the



Fig. 1. Calculated NMRD profiles and X-, W-band ESR lineshapes of
both theories using parameters in Table 1. DZFS = 0.018 cm�1,
sf = 30 ps, sR = 10000 ps. Solid line is from GSBM theory and
scattered line is from SLA.
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range of validity for GSBM. The parameters used for
the different calculations displayed in the figures are
summarized in Table 1.

Fig. 1 displays the theoretical NMRD profiles and
the X-, W-band ESR spectra obtained using GSBM
and SLA for the best-fit ZFS parameters of the Gd(III)
MS-325 + HSA complex [10]. The GSBM theory could
reproduce the NMRD profile well, but we noticed a sig-
nificant discrepancy between the theoretical ESR line-
shape and the recorded X-band spectrum. The
parameters extracted indicate that the perturbation ap-
proach should be applicable, provided that a static
ZFS interaction is sufficiently small. The ZFS interac-
tion obtained from fitting the NMRD profile was rela-
tively small DZFS = 0.018 cm�1 resulting in
DZFSsf = 0.1, which is smaller than 1, but not very much
smaller, which is generally required for a second-order
perturbation approach. If there is a ‘‘static’’ ZFS inter-
action, it must be much smaller than the transient
ZFS, because the reorientational correlation time,
sR = 10�8 s, is so large [10]. A correlation time of
sf = 30 ps indicates non-extreme narrowing conditions,
xSsf > 1, and thus multi-exponential electron spin relax-
ation is expected. A very small discrepancy between the
NMRD profiles obtained from GSBM and SLA is
shown in Fig. 1. The NMRD profiles actually coincide
over the whole range of magnetic fields. The X-band
and W-band spectra of Fig. 1 calculated using the
GSBM lineshape function are also very similar to those
of the SLA approach.

The NMRD profiles and ESR spectra calculated
using parameters which corresponds to small Gd(III)
complexes, such as MS-325 or Gd-DTPA and others,
are displayed in Fig. 2. The extreme narrowing condi-
tion prevails for the electron spin system and the reori-
entational correlation time sR = 74 ps is the range for
most small size contrast agents. The GSBM theory
and SLA give almost identical results for NMRD pro-
files and ESR spectra.

Fig. 3 refers to a case where the second-order pertur-
bation approach breaks down. The interaction strength
parameter, DZFS Æ sf = 0.603 is clearly outside the regime
of validity for second-order perturbation theory. The
correlation time of sf = 10 ps implies extreme narrowing
Table 1
Parameters used for both theories in NMRD and ESR X-, W-band
calculation

Figure DZFS (cm�1/rad s�1) sf (ps) DZFS Æ sf sR (ps)

Fig. 1 0.018/0.339 · 1010 30 0.102 10000
Fig. 2 0.04/0.754 · 1010 9 0.068 74
Fig. 3 0.32/6.032 · 1010 10 0.603 74
Fig. 4 0.091/1.714 · 1010 30 0.514 433
Fig. 5 0.038/0.716 · 1010 150 1.07 —

Notice that sR is not involved in ESR calculation for both GSBM and
SLA methods.
conditions for the electron spin system. The low-field re-
gion of the NMRD profile calculated using GSBM is
significantly underestimated, whereas the high-field
region is still satisfactorily described. However, the X-
band ESR spectra of GSBM and SLA are clearly differ-
ent. The GSBM displays a Lorentzian lineshape,
whereas the SLA displays a slow-motion-like spectrum
that exhibits an interesting wave-like character in the
wings. The W-band ESR spectra are more like the
GSBM Lorentzian lineshape but SLA generates a signif-
icantly broader linewidth.

In Fig. 4, we have changed the condition as compared
to Fig. 3 by increasing the correlation time sf = 30 ps,



Fig. 2. Calculated NMRD profiles and X-, W-band ESR lineshapes of
both theories using parameters in Table 1. DZFS = 0.04 cm�1, sf = 9 ps,
sR = 74 ps. Solid line is from GSBM theory and scattered line is from
SLA.

Fig. 3. Calculated NMRD profiles and X-, W-band ESR lineshapes of
both theories using parameters in Table 1. DZFS = 0.32 cm�1,
sf = 10 ps, sR = 74 ps. Solid line is from GSBM theory and scattered
line is from SLA.
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implying non-extreme narrowing conditions. The
GSBM theory breaks down and SLA produces an inter-
esting X-band spectrum. The X-band spectra in Figs. 3
and 4 are similar in showing a non-Lorentzian lineshape
with wave-like wings. Both X-band curves show similar
character in the low-field wing as the experimental X-
band spectrum of MS-325 + HSA. The high-field wing
of X-band in Fig. 4 is, however, too pronounced.

One has to be aware that the negative values of mag-
netic fields of the ESR X-band spectra in Figs. 3 and 4
are not physically possible. In the range 1000–6000 G,
our analytical lineshape function cannot give the full
X-band ESR spectra because the linewidth is too broad.
However, mathematically it is possible to use negative
magnetic field values in our lineshape function to give
full spectra.

In Fig. 5, we display the experimental X-band ESR
lineshape of MS-325 + HSA (solid line). The dash line
represents the slow-motion spectrum calculated using
SLA, which has a characteristic low-field shoulder,
and the asymmetric intensity with the wave-like charac-
ter in the high-field wings. This lineshape conforms quite
well with the non-Lorentzian character of the X-band
ESR lineshape of MS-325 + HSA. The ZFS interaction
used DZFS = 0.038 cm�1 which indicates a significantly
larger ZFS interaction than was used to reproduce the
NMRD profile. The correlation time sf = 150 ps cannot



Fig. 4. Calculated NMRD profiles and X-, W-band ESR lineshapes of
both theories using parameters in Table 1. DZFS = 0.091 cm�1,
sf = 30 ps, sR = 433 ps. Solid line is from GSBM theory and scattered
line is from SLA.

Fig. 5. X-band ESR lineshapes of MS-325 + HSA. Solid line is from
experiment and dash line is from SLA calculation where
DZFS = 0.038 cm�1, sf = 150 ps, and DZFS Æ sf = 1.07.
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be the reorientational correlation time of the whole com-
plex but should be interpreted as a very slow ‘‘distor-
tional correlation time.’’ We have not been able to
resolve the nature of this dynamics. The dynamics model
used in this work can only indicate slow-motion condi-
tions. The simple two dynamics model includes a fast
dynamics, characterized by a distortional correlation
time (1–10 ps) and a slow diffusion process which in
most cases refers to the motion of the whole complex.
This finding seems to indicate that the transient ZFS
must include at least two different time scales.

A detailed analysis of this case requires more ESR
and NMRD experiments and a refined dynamics model
of the ZFS interaction. Here, we only want to indicate
that this rather strange X-band lineshape seems to be
a slow-motion spectrum. The interaction strength
parameter, DZFS Æ sf = 1.07, obviously falls outside the
perturbation regime.

For cases with the interaction parameter
DZFS Æ sf 6 0.1, the GSBM theory reproduces the SLA
results very well. The NMRD profiles are nicely repro-
duced over the whole range of magnetic fields while
the different ESR band spectra are fairly well repro-
duced by the lineshape function I (xS � x). We conclude
that the GSBM-theory calculates the NMRD profile
accurately over the whole range of magnetic fields, pro-
vided the interaction parameter satisfies the condition
DZFS Æ sf 6 0.1.
4. Conclusions

Within the perturbation regime set to DZFS Æ sf 6 0.1,
the GSBM and SLA theories give very similar results
and it is concluded that the GSBM and the ESR line-
shape function leads to accurate results. Within the per-
turbation regime as defined above, the relatively simple
GSBM theory is thus a safe tool in analysing both
NMRD profiles and ESR spectra.

The rather spectacular X-band lineshape observed for
the Gd(III) MS-325 + HSA complex, which could not
be reproduced by the GSBM theory, is very likely a
slow-motion spectrum. To analyse this X-band spec-
trum, we need the SLA and probably a more sophisti-
cated dynamics model of the ZFS, which includes
more than two different time scales. A careful study
using a many dynamics model is needed to resolve the
time scale and the nature of the sf � 150 ps distortion
correlation time.
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Appendix A. The electron spin–spin spectral density sDD
1

The Redfield matrix describing electron spin–spin
relaxation for S = 7/2 can be represented in Zeeman
basis, and if rewrite it with symbols, then we have:

R ¼

A B C 0 0 0 0

B D E F 0 0 0

C E G 0 H 0 0

0 F 0 I 0 F 0

0 0 H 0 G E C

0 0 0 F E D B

0 0 0 0 C B A

2
666666666664

3
777777777775

; ðA:1Þ

where the matrix elements are given in the following
table.

Matrix elements of R (bLM) for S = 7/2
A = 54J0 + 174J1 + 66J2 � i78Q1 + i24Q2

B ¼ �24
ffiffiffiffiffi
21

p
J1

C ¼ �6
ffiffiffiffiffiffiffiffi
105

p
J2

D = 24J0 + 174J1 + 126J2 � i18Q1 � i6Q2

E ¼ �24
ffiffiffi
5

p
J1

F ¼ �60
ffiffiffi
3

p
J2

G = 6J0 + 78J1 + 186J2 + i18Q1 � i24Q2

H = �120J2
I = 30J1 + 210J2 + i30Q1 � i30Q2
Then we add the static ZFS interaction term, defined
as

HZFS
0 ðbLMÞ ¼

ffiffiffi
2

3

r
DsSPMd

2
00ðbLMÞS2

0; ðA:2Þ

where SPM is an order parameter given by
SPM ¼ hd2

00ðbPMÞi. The resulting matrix is then trans-
formed to an irreducible spherical electron spin tensor
base with the operator basis set OR

r

OR
r ¼

X
m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rþ1

p S S R

mþr �m �r

� �
ð�1ÞS�m�rjSmþrihSmj

ðA:3Þ

expressed in terms of Zeeman eigenoperators | Sm + ræ
ÆSm | and where

S S R

mþ r �m �r

� �
ðA:4Þ

is a 3j-symbol [21].
The resulting matrix is written with first even rank

tensors and then odd rank tensors, in the order 2, 4, 6,
1, 3, 5, 7. The Zeeman matrix 1i(xI ± xS) is then added.
We get a matrix of the form

M	1 ¼

a b 0 c d 0 0

b e f 0 g h 0

0 f i 0 0 j k

c 0 0 l m 0 0

d g 0 m n p 0

0 h j 0 p q r

0 0 k 0 0 r s

2
666666666664

3
777777777775

ðA:5Þ

with the elements defined in the table given below.

Matrix elements of M±1 (bLM) for S = 7/2
a ¼ 6

7
ð43J0 þ 51J1 þ 102J2 � i51Q1 þ i8Q2Þ þ iðxI 	 xSÞ

b ¼ 12
ffiffiffiffiffiffiffiffi
110

p

7
ðJ0 þ 2J1 � 3J 2 � i2Q1 þ iQ2Þ

c ¼ 2
ffiffiffi
3

p
DsSPMd

2
00ðbLM Þ

d ¼ 2

ffiffiffiffiffi
22

7

r
DsSPMd

2
00ðbLM Þ

e ¼ 6

77
ð402J0 þ 2281J1 þ 2707J2 � i419Q1 þ i17Q2Þ

þ iðxI 	 xSÞ

f ¼ 42
ffiffiffiffiffi
10

p

11
ðJ 0 þ 8J 1 � 9J2 � i2Q1 þ iQ2Þ

g ¼ 4

ffiffiffi
5

7

r
DsSPMd200ðbLM Þ

h ¼ 2

ffiffiffiffiffi
26

11

r
DsSPMd200ðbLM Þ

i ¼ 6

11
ð29J 0 þ 375J 1 þ 366J 2 � i3Q1 � i26Q2Þ

þ iðxI 	 xSÞ

j ¼ 14

ffiffiffiffiffiffiffiffi
5

143

r
DsSPMd

2
00ðbLM Þ

k ¼ 4

ffiffiffiffiffi
3

13

r
DsSPMd200ðbLM Þ

l = 6 (3J0 + 5J1 + 2J2 � iQ1 � i2Q2) + i(xI ± xS)

m ¼ 6

ffiffiffiffiffi
66

7

r
ðJ0 � J 2 � i2Q1 þ iQ2Þ

n = 2 (18J0 + 55J1 + 77J2 � i21Q1 + i3Q2) + i(xI ± xS)

p ¼ 4

ffiffiffiffiffiffiffiffi
130

77

r
ð3J 0 þ 14J1 � 17J2 � i6Q1 þ i3Q2Þ

q ¼ 2

13
ð159J0 þ 1427J1 þ 1534J 2 � i123Q1 � i36Q2Þ þ iðxI 	 xSÞ

r ¼ 84

143

ffiffiffiffiffiffiffiffi
165

p
ðJ 0 þ 12J 1 � 13J 2 � i2Q1 þ iQ2Þ

s ¼ 6

13
ð12J0 þ 209J1 þ 143J2 þ i41Q1 � i53Q2Þ þ iðxI 	 xSÞ
The element sDD
1 we are interested in is the (4,4)

matrix element of the inverted matrix M�1
	1:

sDD
1 ¼ X

Y
; ðA:6Þ

whereX=(k2nb2q+ eak2p2� eak2qn� asnf2q+2 asnjfh�
2 aspfgj+asg2j2+asf2p2 � 2 dsgbj2 + sb2j2n + 2 dspfbj �
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2 d2sjfh + ieasnq + 2 idsgbq � 2 idr2gb � iash2n + 2
iasphg � 2 idsphb � isb2nq � ieasp2 � iear2n � ied2sq �
iasg2q+ id2er2+ iar2g2+ ir2b2n+ id2sh2� easj2n+ ed2sj2+
isb2p2+ d2sf2q� d2k2h2� 2 kjnb2r� 2 arkjg2� 2 ak2phg +
2 d2kfhr � 2 d2erkj � 2 dk2qgb + 2 earkjn + 2 arfkpg +
d2ek2q + 4 dkjgbr � 2 dfkpbr � d2r2f2 + 2 dk2phb +
ak2h2n � 2 akfhrn + ak2qg2 + ar2f2n � k2p2b2) and
Y = (�r2nc2f2 � sf2p2c2 � sc2j2g2 � ar2m2f2� k2qb2m2 �
k2c2h2n � sb2m2j2 � k2c2qg2 + 4derkjmc�2 desj2mc � 2
dsmcf2q+ iear2m2 + lk2nb2q + lar2f2n + lasg2j2 + ld2sf2q

+ ier2nc2 + iesc2p2 + isb2m2q � 2 asm2jfh + 2 k2qmbcg �
2 spbcmfj + 2 akfhrm2 � ak2h2m2 + iasm2h2 + isc2h2n +
isc2qg2 + 2 ispbcmh + 2 ir2gbmc � isc2phg � iesc2qn �
ieasm2q � 2 ismbcgq � 2 idsh2mc + ilsb2p2 + 2 idesmcq �
2 ider2mc + ilr2b2n � ilasg2q � ilsb2nq + 2 ilasphg � 2
ildsphb � 2 ildr2gb + ilar2g2 � ild2esq + 2 ildsgbq +
ileasnq � ileasp2 � ilear2n � ilash2n + ild2er2 + ild2sh2 +
2 fkpbrmc+asm2f2q+2 sc2pfgj +2 kfhrnc2 + 2 rb2m2kj �
4 kjgbrmc + 2 sgbj2mc + 2 k2c2phg + ek2c2qn + esc2j2n

+ easm2j2 � 2 earkjm2+ eak2m2q� 2 erkjnc2� 2 k2pbcmh

+ 2 rkjg2c2� ek2c2p2� 2sc2jfhn � 2 rfkpgc2 + sf2qnc2 � 2
dek2qmc + 2 dr2f2mc + 2 dk2h2mc � 4 dkfhrmc + 4
dsmcjfh� ir2b2m2� lk2p2b2� ld2k2h2+ lasf2p2� leak2qn

� 2 lakfhrn + 2 ldk2phb � 2 ldfkpbr + 2 ldspfbj + 4
ldkjgbr � 2 ldsgbj2 + lak2qg2 + lak2h2n + lsb2j2n +
leak2p2 + ld2ek2q + ld2esj2 � leasj2n + 2 learkjn � ld2r2f2

+ 2 larfkpg � 2 ldk2qgb + 2 ld2kfhr � 2 ld2erkj � 2
ld2sjfh + 2 lasnjfh � lasnf2q � 2 lak2phg � 2 larkjg2 � 2
laspfgj � 2 lkjnb2r � ir2g2c2).
Appendix B. The electron spin–lattice spectral density sDD
0

Again we start with the Redfield matrix describing
electron spin–lattice relaxation. The Zeeman basis is gi-
ven in symbolic form

R ¼

A B C 0 0 0 0 0

B D E F 0 0 0 0

C E G H I 0 0 0

0 F H J 0 I 0 0

0 0 I 0 J H F 0

0 0 0 I H G E C

0 0 0 0 F E D B

0 0 0 0 0 C B A

2
66666666666664

3
77777777777775

; ðB:1Þ

where the matrix elements are given in the table below.

Matrix elements of R (bLM) for S = 7/2
A = 126J1 + 42J2
B = �126J1
C = �42J2
D = 222J1 + 90J2
E = �96J1
F = �90J2
G = 126J1 + 162J2
H = �30J1
I = �120J2
J = 30J1 + 210J2
Then we transform the basis using the similar method
as previous part. In this case, the static ZFS interaction
term is zero. The transformed matrix has the following
form:

N ¼

0 0 0 0 0 0 0 0

0 A 0 H 0 0 0 0

0 0 B 0 I 0 0 0

0 H 0 C 0 J 0 0

0 0 I 0 D 0 K 0

0 0 0 J 0 E 0 L

0 0 0 0 K 0 F 0

0 0 0 0 0 L 0 G

2
66666666666664

3
77777777777775

: ðB:2Þ

The above matrix can be reduced to a 4 · 4 matrix since
only odd-rank tensor operators enter the theoretical
description. The final M0 matrix is formed as

M0 ¼

a e 0 0

e b f 0

0 f c g

0 0 g d

2
6664

3
7775; ðB:3Þ

where the matrix elements are given in the table below.

Matrix elements of M1 (bLM) for S = 7/2
a ¼ 12ðJ1 þ 4J 2Þ � ixI þ 1
sR

b ¼ 12ð12J1 þ 13J 2Þ � ixI þ 1
sR

c ¼ 60
13 ð53J1 þ 51J2Þ � ixI þ 1

sR

d ¼ 168
13 ð8J1 þ 5J 2Þ � ixI þ 1

sR

e ¼ 24
ffiffiffiffi
11
7

q
ðJ1 � J 2Þ

f ¼ 240
ffiffiffiffi
13
77

q
ðJ1 � J 2Þ

g ¼ 240
13

ffiffiffiffiffiffi
343
11

q
ðJ1 � J2Þ
The inverted matrix element is given by

sDD
0 ¼ bcd � df 2 � bg2

abcd � cde2 � adf 2 � abg2 þ e2g2
: ðB:4Þ
Appendix C. The ESR lineshape function

The derivation of ESR lineshape function has the
same procedure as that in the part of electron spin–spin
spectral density. The differences are the definition of the
M matrix and r = 1. The matrix elements are given in
the following table.
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IðxÞ ¼ X
Y
; ðC:1Þ

where X and Y have the same expression as in Eq. (A.6).

ESR lineshape matrix elements, r = 1
a ¼ 6
7 ð43J0 þ 51J1 þ 102J2 � i51Q1 þ i8Q2Þ þ iðxþ xSÞ

b ¼ 12
ffiffiffiffiffiffi
110

p

7 ðJ0 þ 2J1 � 3J 2 � i2Q1 þ iQ2Þ
c ¼ 2

ffiffiffi
3

p
DsSPMd200ðbLM Þ

d ¼ 2
ffiffiffiffi
22
7

q
DsSPMd200ðbLM Þ

e ¼ 6
77 ð402J0 þ 2281J1 þ 2707J2 � i419Q1 þ i17Q2Þ þ iðxþ xSÞ

f ¼ 42
ffiffiffiffi
10

p

11 ðJ 0 þ 8J 1 � 9J2 � i2Q1 þ iQ2Þ
g ¼ 4

ffiffi
5
7

q
DsSPMd200ðbLM Þ

h ¼ 2
ffiffiffiffi
26
11

q
DsSPMd200ðbLM Þ

i ¼ 6
11 ð29J 0 þ 375J 1 þ 366J 2 � i3Q1 � i26Q2Þ þ iðxþ xSÞ

j ¼ 14
ffiffiffiffiffiffi
5
143

q
DsSPMd

2
00ðbLM Þ

k ¼ 4
ffiffiffiffi
3
13

q
DsSPMd200ðbLM Þ

l = 6 (3J0 + 5J1 + 2J2 � iQ1 � i2Q2) + i(x + xS)

m ¼ 6
ffiffiffiffi
66
7

q
ðJ 0 � J2 � i2Q1 þ iQ2Þ

n = 2 (18J0 + 55J1 + 77J2 � i21Q1 + i3Q2) + i(x + xS)

p ¼ 4
ffiffiffiffiffiffi
130
77

q
ð3J0 þ 14J1 � 17J2 � i6Q1 þ i3Q2Þ

q ¼ 2
13 ð159J0 þ 1427J 1 þ 1534J 2 � i123Q1 � i36Q2Þ þ iðxþ xSÞ

r ¼ 84
143

ffiffiffiffiffiffiffiffi
165

p
ðJ 0 þ 12J 1 � 13J 2 � i2Q1 þ iQ2Þ

s ¼ 6
13 ð12J0 þ 209J1 þ 143J2 þ i41Q1 � i53Q2Þ þ iðxþ xSÞ
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